
STATIC, STAGNATION, AND DYNAMIC 
PRESSURES

Bernoulli equation is 

In this equation p is called static pressure, because it is the pressure that
would be measured by an instrument that is static with respect to the
fluid. Of course, if the instrument were static with respect to flowing
fluid, it would have move along with the fluid. However, such a
measurement rather difficult to make in a practical situation. However,
we showed that there was no pressure variation normal to straight
streamlines. This fact makes it possible to measure the static pressure in
a flowing fluid using a wall pressure “tap” placed in a region where the
flow streamlines are straight as shown in the figure. The pressure tap is
a small hole, drilled carefully in the wall, with its axis perpendicular to
the surface.

Figure. Measurement of static pressure.
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In a fluid stream far from a wall, or where streamlines are curved,
accurate static pressure measurements can be made by careful use of a
static pressure probe, shown in the figure.

When a flowing fluid is decelerated to zero speed by a frictionless
process, the pressure measured at that point is called stagnation
pressure.

Figure. Measurement of stagnation pressure (Pitot tube).

In incompressible flow, applying Bernoulli equation between points in
the free stream and at the nose of tube and taking z = 0 at the tube
centerline, we get

where P0 is the stagnation pressure, the stagnation speed V0 is zero.

where p is the static pressure. The term generally is called
dynamic pressure. Solving the dynamic pressure, we get,

and for the speed 
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The static pressure corresponds to 

a point A is read from the wall 

static pressure tap. The stagnation 

pressure is measured directly at A

by the total head tube.

Two probes are combined as in 

pitot-static tube. The inner tube is 

used to measure the stagnation 

pressure at point B while the static 

pressure at C is measured by the 

small holes in the outer tube.
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Example: A simple pitot tube and a piezometer are installed in a vertical pipe as
shown in the figure. If the deflection in the mercury manometer is 0.1 m, then
determine the velocity of the water at the center of the pipe. The densities of
water and mercury are 1000 kg/m3 and 13600 kg/m3, respectively.

ME304 5 4

To be completed in class
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RELATION BETWEEN THE FIRST LAW OF 
THERMODYNAMICS AND THE BERNOULLI EQUATION

Consider steady flow in the absence of shear forces. We choose a
control volume bounded by streamlines along its periphery. Such a
control volume often is called a streamtube. We apply energy equation
to this control volume.

Basic equation (Energy equation)

Restrictions: 1) 

2) 

3) 

4) Steady flow

5) Uniform flow and properties at each section

Under these restrictions

But from continuity under these restrictions
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That is,

Also,

Thus, from the energy equation

or

Under the restriction of incompressible flow and hence

This will reduce to the Bernoulli equation if the term in parentheses were zero.
Thus, under the additional restrictions,

6) incompressible flow

7)

The energy equation reduces to

Before, the Bernoulli equation was derived from momentum considerations
(Newton’s second law), and is valid for steady, incompressible, frictionless flow
along a streamline.

In this section, the Bernoulli equation was obtained by applying the first law of
thermodynamics to a streamtube control volume, subject to restrictions 1 through
7 above.
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Example: Consider the frictionless, incompressible flow with heat transfer. Show 
that
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Q
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ENERGY GRADE LINE AND HYDRAULIC GRADE LINE

Often it is convenient to represent the mechanical energy level of a flow 
graphically. The energy equation, that is Bernoulli equation, suggests 
such a representation. Dividing Bernoulli equation by g, we obtain

Each term has dimensions of length, or “head” of flowing fluid. The 
individual terms are 

is the head due to local static pressure

is the head due to local dynamic pressure

z is elevation head

H is the total head of the flow

The energy grade line (EGL): The locus of points at a vertical distance,

, measured above a horizontal datum, 

which is the total head of the fluid.

The hydraulic grade line (HGL): The locus of points at a vertical distance, 

, measured above a horizontal datum.

The difference is heights between the EGL and HGL represents, 
the dynamic (velocity) head,         .
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UNSTEADY BERNOULLI EQUATION 
– INTEGRATION OF EULER’S EQUATION ALONG A STREAMLINE

Consider the streamwise Euler equation in streamline coordinates

The above equation may now be integrated along an instantaneous 
streamline from point 1 to point 2 to yield

For an incompressible flow, it becomes

Restrictions: 1) Incompressible flow

2) Frictionless flow

3) Flow along a streamline
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Example: A long pipe is connected to a large reservoir that initially is filled with
water to a depth of 3 m. The pipe is 150 mm in diameter and
6 m long. As a first approximation, friction may be neglected. Determine the flow
velocity leaving the pipe as a function of time after a cap is removed from its free
end. The reservoir is large enough so that the change in its level may be neglected.

ME304 5 12

To be completed in class
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FLOW MEASUREMENT
Flow measurement refers to the ability to measure the velocity, volume flow rate, or 
mass flow rate of any liquid or gas.

There are many types of devices used for flow measurement. Many of these devices 
use the rinciple of Bernoulli equation.

The choice of a flow meter is influenced by accuracy required, range, cost, 
complication, ease of reading or data reduction, and service life.

Flow Measurement Techniques

In general devices used for flow measurement can be grouped depending on the 
nature of the data obtained by the device. Based on this, flow measurement devices 
can be grouped as follows:

A) Measurement of Integral Properties of Flows (Mass and volume flow 
measurement)
1) Restriction flow meters for Internal Flows

a) Orifice meter
b) Flow nozzle 
c)  Venturi meter

2) Rotameter
3) Turbine flow meter
4) Coriolis technique

B) Measurement of Local Flow Parameters (Local Velocity Measurement)
1) Pitot-static tube
2) Hot wire anemometer
3) Lase doppler anemometry (LDA)
4) Particle image velocimery (PIV)
5) Ultrosonic technique
6) Magnetic technique
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MASS AND VOLUME FLOW MEASUREMENT

Restriction Flow Meters
An easy and cheap way to measure flow rate through a pipe is to place some type of 
restriction within the pipe as shown in the figure below: 

Orifice meter
- Head loss high
- Initial cost low

Flow nozzle meter
- Head loss intermediate
- Initial cost intermediate

Venturi meter
- Head loss low
- Initial cost high

The operation of each of these devices is based on the same principles, i.e. due to 
restriction velocity increases and pressure decreases. 

We assume the flow is horizontal (z1=z2), steady, frictionless and incompressible 
between points 1 and 2:



ME304 5 16

Due to sharp edge of flow nozzle and orifice, flow separation and hence recirculating
zones forms as seen in the figure. The main stream flow continues to accelerate from
nozzle throat and a «vena contracta» forms at cross section 2. After cross-section 2,
the flow decelerates again and fill the duct.

At vena contracta, the flow area is minimum, streamlines are straight, and the
pressure is uniform across the channel section.

Theoretical flow rate can be obtained using Bernoulli equation and equation of
conservation of mass as follows:

To be completed in class
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This equation shows that under our set of assumptions, for a given fluid () and flow
meter geometry (A1 and A2), the flow rate is directly proportional to the pressure drop
across the meter tabs, i.e.

Pm ltheoretica 

Flow rate at cross-sectional area 2 is unknown when vena contracta is pronounced.
Frictional effects can become important (especially down stream from the meter.)
when the meter contours are abrupt. Finally, the location of the pressure taps
influences the differential pressure reading.

Due to the above reasons, the actual flow rate is different from the theoretical flow
rate given by Eq. (A). Hence, Eq. (A) is adjusted for Reynolds number and diameter
ratio (Dt/D1) by defining and empirical discharge coefficient C, as follows:
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Discharge coefficient C and velocity of approach factor are combined into a single 
«flow coefficient» K as
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In terms of flow coefficient, actual mass flow arte is expressed as,
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For standardized meters, test data is used to develop empirical equations that predict the
discharge and flow coefficients as a function of diameter ratio Dt/D1 and Reynolds
number.

For the turbulent flow regime (Re>4000), discharge coeffient and flow coefficient may me
expressed as follows:
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In the above equations, subscript ∞ denotes the coefficient at infinite Reynolds 
number; constants b and n allow for scaling to finite Reynolds number.

Correlating equations and curves of coefficients versus reynolds number are given for 
orifice plate, flow nozzle and venturi meter.

Orifice Meter (Plate)

The correlating equation recommended for a concentric orifice with corner tabs is  

75.0

5.2
81.2

1
Re

71.91
184.00312.05959.0

D

C


 

This equation predicts the discharge coefficient C within ±0.6 percent for 0.2˂ ˂0.75
and for 104 ˂Re ˂107. Flow coefficients calculated from the above equation are
presented in figure below:

Pressure tabs for orifices may be 
placed in several locations as shown in 
above figure.

Flow coefficient for corner concentric 
orifices with corner taps.
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Flow Nozzle
Flow nozzle may be used as metering elements in either plenums or ducts as shown in 
figure.

Correlating equation recommended for an ASME long-radius flow nozzle is 

5.0

5.0

1
Re

53.6
9957.0

D

C




This equation predicts the discharge coefficient C for the flow nozzle within ±2.0
percent for 0.25˂ ˂0.75 and for 104 ˂Re ˂107. Flow coefficients calculated from the
above equation are presented in figure below:

Flow coefficients for ASME long-radius flow nozzle.

For plenum nozle
=0.0

Flow coefficient K is in the range of 
0.95˂K ˂0.99 
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Venturi Meter

Experimental data show that discharge coefficients for venturi meters range from 0.980 
to 0.995 at high Reynolds numbers (ReD1>2x105) Thus, C=0.99 can be used to measure 
the mass flow rate within about ±1 percent at high Reynolds numbers.

Permanent Head Loss Produced by Flow metering Elements
The unrecoverable loss in head across a metering element may be expressed as a
function of the differential pressure p, across the element. Pressure losses are
displayed as functions of diameter ratio in the figure below:
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Example: Determine the flow rate of water through the venturi meter shown in the
figure. Calculate theoretical and actual flow rates.

To be completed in class
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Rotameter

Turbine Flow Meter

1. Consists of a multi-bladed rotor 
mounted at right angles to the flow & 
suspended in the fluid stream on a free-
running bearing.
2. The diameter of the rotor is slightly 
less than the inside diameter of the flow 
metering chamber.
3. Speed of rotation of rotor proportional 
to the volumetric flow rate.

1. A free moving float is balanced inside a vertical tapered tube
2. As the fluid flows upward the float remains steady when the dynamic forces 
acting on it are zero.
3. The flow rate indicated by the position of the float relative to a calibrated scale.
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LOCAL VELOCITY MEASUREMENT

1) Pitot-static tube
2) Hot wire anemometer
3) Lase doppler anemometry (LDA)
4) Particle image velocimery (PIV)
5) Ultrosonic technique
6) Magnetic technique

Pitot-Static Tube

The static pressure corresponds to 

a point A is read from the wall 

static pressure tap. The stagnation 

pressure is measured directly at A

by the total head tube.

Two probes are combined as in 

pitot-static tube. The inner tube is 

used to measure the stagnation 

pressure at point B while the static 

pressure at C is measured by the 

small holes in the outer tube.

See pressure measurement technique above
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Example: A pitot-static tube is used to measure the speed of air at standard conditions 
at a point in a flow.  The manometer deflection in millimeters of water is measured as 
63 mm. Determine the speed of air at that point.



IRROTATIONAL FLOW
When the fluid elements moving in a flow field do not undergo any
rotation, then the flow is known to be irrotational. For an irrotational
flow,

that is,

In cylindrical coordinates,

BERNOULLI EQUATION APPLIED TO IRROTATIONAL FLOW
Euler equation for steady flow was

using vector identity

We see that for irrotational flow                   ; therefore, it reduces to

And Euler’s equation for irrotational flow can be written as
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During the interval dt, a fluid particle moves from the vector position 
to the position Taking the dot product of 
with each of the terms in above equation, we obtain 

and hence

integrating this equation gives,

For incompressible flow,  = constant, and 

Since  dr was an arbitrary displacement, this equation is valid between 
any two points in the flow field. The restrictions are 

1. Steady flow

2. Incompressible flow

3. Inviscid flow

4. Irrotational flow
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VELOCITY POTENTIAL

We can formulate a relation called the potential function, , for a
velocity field that is irrotational. To do so, we must use the fundamental
vector identity

which is valid if (x,y,z,t) is a scalar function, having continuous first and
second derivatives.

Then, for an irrotational flow in which , a scalar function, ,
must exist such that the gradient of  is equal to the velocity vector, .

Thus,

In cylindrical coordinates

The potential velocity, , exists only for irrotational flow. Irrotationality
may be a valid assumption for those regions of a flow in which viscous
forces are negligible. For example, such a region exists outside the
boundary layer in the fluid over a solid surface.

All real fluids possess viscosity, but there are many situations in which
the assumption of inviscid flow considerably simplifies the analysis and
gives meaningful results.
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STREAM FUNCTION AND VELOCITY POTENTIAL
FOR TWO-DIMENSIONAL, IRROTATIONAL INCOMPRESSIBLE FLOW;

LAPLACE’S EQUATION

For two dimensional, incompressible, inviscid flow, velocity components
u and v can be expressed in terms of stream function, , and the
velocity potential, ,

Substituting for u and v into the irrotational condition

Substituting for u and v into the continuity equation

Equations (A) and (B) are forms of Laplace’s equation. Any function 

or  that satisfies Laplace’s equation represents a possible two
dimensional, incompressible, irrotational flow field.
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Along a streamline, stream function  is constant, therefore 

The slope of a streamline becomes

Along a line of constant  , d = 0 and 

Consequently, the slope of a potential line becomes 

As potential lines and streamlines have slopes that are negative 
reciprocals; they are perpendicular.

0








 dy

y
dx

x
d




u

v

u

v

y

x

dx

dy














/

/







0








 dy

y
dx

x
d




v

u

y

x

dx

dy







/

/





ME304 5 30



Example: Consider the flow field given by  = 4x2 – 4y2. Show that the flow is 
irrotational. Determine the stream function for this flow.
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To be completed in class



ELEMENTARY PLANE FLOWS

A variety of potential flows can be constructed by superposing elementary flow
patterns. The  and  functions for five elementary two dimensional flows – a
uniform flow, a source, a sink, a vortex and a doublet are summarized in the Table
below.
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SUPERPOSITION OF ELEMENTARY PLANE FLOWS

We showed that both  and  satisfy Laplace’s equation for flow that is both
incompressible and irrotational. Since Laplace’s equation is a linear homogeneous
partial differential equation, solutions may be superposed (added together) to
develop more complex and interesting patterns of flows.
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Table. Superposition of Elementary Plane Flows
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Example: A source with strength 0.2 m3/s m and a counterclockwise vortex with
strength 1 m3/s are placed on origin. Obtain stream function an velocity potential,
and velocity field for the combined flow. Find the velocity at point (1, 0.5).
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Example: The following stream function represents the flow past a cylinder of radius a
with circulation.

Determine the pressure distribution over the cylinder.











a

r
aUSin

r

Ua
UrSin ln

2


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