MOTION OF FLUID ELEMENT (KINEMATICS)

Before formulating the effects of forces on fluid motion (dynamics), first we
consider the motion (kinematics) of a fluid in a flow field. When a fluid element
moves in a flow field, it may under go translation, linear deformation, rotation,
and angular deformation as a consequence of spatial variations in the velocity.
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Figure. Pictorial representation of the components of fluid motion in a flow field.
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Rate of Translation
Tranlation in unit time is equal to velocity,

Od

V(% y,2,t)=u(x, v, 2,t)l +v(x,y,z,t)] + w(x, y, z,t)k

Acceleration of a Fluid Particle in a Velocity Field
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Figure. Motion of a particle in a flow field.

Consider a particle moving in a velocity field. At time t, the particle is at a position x,
y, z and has a velocity Vpgl =V (X, Yy, Z,t)

At time t+dt, the particle has moved to a new position, with coordinates x+dx, y+dy,
z+dz, and has a velocity given by

\7p1+dt =V (x+dx, y+dy,z+dz,t +dt)

The change in the velocity of the particle moving from location o F+dr
is given by

-V oV oV
dV, =—dx, +—dy, +—dz
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Dividing both sides by dt, the total acceleration of the particle is obtained as
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Acceleration of a fluid particle in a velocity field requires a special derivative,
denoted by the symbol DV dv

Dt dt
Thus, DV N N N oV
——=3a,=U +W—+ —
Dt OX oy oz ot

This derivation is called the substantial, the material or particle derivative.

The significance of the terms,

_ DV N N N oV
dy= —— = +V—+W—+ —
P Dt ox oy oz ot
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The convective acceleration may be written as a single vector expression using the

vector gradient operator, V.

NV oV V<o o -
Thus, ua—+va—+wa—=(\/-V)V

OX oy 0z

DV .-V

—T =3 =(V- -V +—
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It is possible to express the above equation in terms of three scalar equations as
Du ou ou ou ou
a, =——=U—+V—+W—+—
> Dt oXx oy oz ot
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The components of acceleration in cylindrical coordinates may be obtained by

utilizing the appropriate expression for the vector operator V. Thus
V. V,dV. V? oV, oV

a, :Vr&+—9 r——f 4V, —L+4
P or r 06 r 0z ot
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Example: The velocity field for a fluid flow is given by

V(X,Y,z,t) = T — 2xyj + 3ztk
Determine:

a) the acceleration vector,

b) the acceleration of the fluid particle at point P(1,2,3) and at time
t=1sec.



FLUID ROTATION
Definition: The rotation of a fluid particle is defined as the average angular velocity of
any two mutually perpendicular line elements of particle in each corrdinate plane.
Hence a particle may rotate about three coordinate axes. Thus, in general, rotation of a
fluid element can be expressed as: /) — T H C
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Figure. Rectangular fluid particle with two instantaneous perpendicular line AA’ and BB'.

By definition, the rotation of fluid element about z-axis can be written as

1 1(d d
W, = E(a)AA’ - a)BB’): _(_0!__,3)

2\ dt dt
da . Aa . Anl(Ax/2) . (&VIOX)AXAt/AX ov
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oX 2 oX 2

4B _ i AB i A I(ay/2) _ lim (QU/0y)Ay At/ Ay _ ou
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By considering the rotation of pairs of perpendicular lines in the yz and xz planes,
one can show that

1{ow ov 1(8u 8Wj
o, ==|——|ad o ==|———
2\ oy oz Yoo2lez  ox

Then

We recognize the term in the square brackets as

curlV =V xV
Then, in vector notation, we can write

@ZEVXV
2

The factor of % can be eliminated in above equation by defining a quantity called
the vorticity, é’, to be twice the rotation,

£ =20=VxV

The vorticity is the measure of the rotation of a fluid element as it moves in the flow
field.

In cylindrical coordinates the vorticity is

~ 1oV, oV, ). ov. oV, . l1orV, oV, ).
VxV = ——2-——% 6 +| ———2 |, +| — ——L |€,
r o0 oz oz or r or 00
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Circulation

The circulation, T', is defined as the line integral of the tangential
velocity component about a closed curve fixed in the flow,

r=55\7-d§
C

where, dS is an elemental vector, of the length ds, tangent to curve; a
positive sense corresponds to a counterclockwise path of integration

around the curve. y

u+ %A}'

A c
Ay
L dv
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For the closed curve Oacbh,

A" = UAX + (v + a—VijAy — (u + Z—uAyJAx —VAY
y

OX
Al = v_u AXAyY
ox oy
Al = 20,AXAy

T=§V-ds = [2m,dA = [ (VxV),dA
C A A

Thus, the circulation around a closed contour is equal to the total
vorticity enclosed within it.



Example: Consider flow fields with purely tangential motion (circular streamlines): V, = 0
and V, = f(r). Evaluate the rotation, vorticity, and circulation for rigid-body rotation, and
“a forced vortex”. Show that it is possible to choose f(r) so that the flow is irrotational; to
produce “a free vortex”.



Angular Deformation of a Fluid Element

Definition: Angular deformation of a fluid element involves changes in the angle
between two mutually perpendicular lines in the fluid.
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Figure. Angular deformation of a fluid element in a two dimensional flow field.

From the definition, the rate of angular deformation of fluid element can be expressed as

_dy _da N dg

dt dt dt
daa . Aa . AnlAx . (ovIOX)AXAt/Ax ov
—=lim —=lim ———= lim =—
dt At-0 At at»0 At At—0 At OX
d_ﬂ= Iimﬁz lim AET Ay _ lim (ou/oy)Ay At/ Ay _ou
dt  At>0 At At—0 At At—0 At 8)/

Consequently, the rate of the angular deformation in the xy plane is obtained as

dy ov ou

_ = ng =—4 —

dt oX oy
. ov
Rate of the angular deformation in the yz plane Eg ="+
oy oz
o oW ou
Rate of the angular deformation in the zx plane ¢&,, = & +8_
JA

The shear stress is related to the rate of angular deformation through the fluid viscosity.
For one-dimensional Newtonian laminar flow the shear stress is given by

ou
7’-yx )

oy
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Linear Deformation

y 4 Ax+(du/dx)AxAt

u AX u+(du/dx)Ax

»
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Definition: Rate of linear deformation of a fluid element is defined as the change in the
unit length in unit time in each coordinate direction.

[ A+ (0u / 6x) AXAt] - Ax ou
/Ax T o

Rate of linear deformation in x-dir: ¢, = At

Similarly in y- and z-directions,

|2

Rate of linear deformation in y-dir: &y =

R2 o

Rate of linear deformation in z-dir: &,, =

Change in the length of the sides of the fluid element may produce change in volume
of the element. The rate of local instantaneous volume dilatation is given by

ou ov ow =

Volume dilationrate =—+—+—=V eV

oX oy oz
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MOMENTUM EQUATION

To derive the differential form of momentum equation, we shall apply
Newton’s second law to an infinitesimal fluid particle of mass dm.

Newton’s second law for a finite system is givenby F = d_P]
system

where the linear momentum, P, of the system is given by

ISsystem = J.\7d m

mass (system)

Then for an infinitesimal system of mass dm, Newton’s second law is written

as - 7 7
dE = dmﬂj _dm2Y
Dt
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Forces Acting on a Fluid Particle

The forces acting on a fluid element may be classified as body forces
and surface forces. Surface forces include both normal forces and
tangential (shear) forces. Surface force acting on a fluid element can be
expressed in terms of stresses.

Stresses acting on a differential fluid element in the x-direction are

shown in the figure. ¥ T, dy
Ty et asta
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Figure. Stresses in the x direction on an element of fluid.

To obtain the net surface force in the x-direction, dF , we must sum the
forces in the x direction.

dFs = (axx + 9% %]dydz - (axx _ 9% %]dydz

oxX 2 oxX 2

0 0
+ ryx+iﬂ dxdz -| z,, — T Y iz
oy 2 oy 2

+ [rzx + Oy Ejdxdy - (z‘zx _ Oty Ejdxdy
oz 2 oz 2
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By simplifying, we obtain

ot
dF, = 9% C0v 0o \gyvdz
. OX oy 0z

When the gravity is only the body force acting, then the body force per unit mass in
x-direction is given by

dFp =g,pdxdydz
Then the total net force in x-direction can b expressed as

0
dFy, = dFg +dF = (,ng + 9% | O | 0T jdxdydz

OX oy 0z

One can derive similar expressions for the force components in the y and z
directions.

or oo or
dF, =dF; +dF. = + Y WY |dxdydz
y By Sy (pgy aX 8y 82 J y
or,, 0t, Oo
dF, =dF, +dF. = X4 Y22 |dxdydz
z B, S, (pgz ox ay o7 ] y

Differential Momentum Equation

We have now formulated expressions for the components, dF, , dF,, and dF,
of the force, dF, acting on the element of mass dm. If we substitute these
expressions for the force components into x, y, and z components of
equation, we obtain differential equations of motion.

ou ou ou ou
+U—+V—+W

oo, O0t, 0Or,
+ =p| — —
ot ox oy 0z

OX oy 0z
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These three equations are the differential equations of motion for any
fluid satisfying the continuum assumption. Before the equations can be
used to solve problems, suitable expressions for the stresses must be
obtained in terms of the velocity and pressure fields. Since the relation
between stress and velocity is different for Newtonian and non-
Newtonian fluids, to express the stresses in terms of velocity and
pressure, we need to identify the type of fluid.

Newtonian Fluid: Navier-Stokes Equations

For a Newtonian fluid the viscous stress is proportional to the rate of
shearing strain (angular deformation rate). The stresses may be
expressed in terms of velocity gradients and fluid properties in
rectangular coordinates as follows:

__[ov ou
Z’Xy—TyX—,u &‘f‘a

oy o0z
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where p is the local thermodynamic pressure.

If these expressions are introduced into the differential equations of
motion, we obtain
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These equations of motion are called the Navier-Stokes equations. The equations
are greatly simplified when applied to incompressible flow with constant
viscosity. Under these conditions the equations reduce to

| I
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The Navier-Stokes equations in cylindrical coordinates, for constant density and
viscosity, are given in the textbook.

For the case of frictionless flow (u = 0) the equations of motion reduce to Euler’s
equation, -

Vv
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